
Docker
Datalogforeningen, 7. June 2016

Martin Mosegaard Amdisen





Agenda

● Introduction to Docker and containers
● Using Docker
● Docker and DevOps
● State of adoption
● Demo



What is Docker?

● A platform to “build, ship, and run any app, anywhere” using container 
technology

● Many products and tools
○ Docker Engine
○ Docker Hub
○ Docker Machine
○ Docker Swarm
○ Docker Compose
○ ...



Introducing containers

● Use the kernel on the host operating system to run multiple root file systems
● Each root file system is called a container
● Each container also has its own

○ Processes
○ Memory
○ Devices
○ Network stack



Containers versus virtual machines



Why use Docker?

● Applications are no longer monolithic
● Service oriented architecture means different application stacks
● Services are decoupled and scaled out
● Deployment can become complex



The deployment nightmare



The matrix from hell



A shipping analogy



The shipping container



Solving the deployment matrix



Benefits of Docker

● Separation of concerns
○ Developers focus on building apps
○ System admins focus on deployment

● Fast development cycle
● Application portability
● Scalability
● Infrastructure as code



Docker and the Linux kernel

● Docker Engine is the 
program that enables 
containers to run

● Uses Linux kernel 
namespaces and control 
groups

● Namespaces limits what you 
can use

● Control groups limits how 
much you can use



Docker client and daemon

● Client sends user input to the 
daemon

● Daemon builds and runs 
containers

● Client and daemon on same 
host or on different hosts

● Docker Machine used to 
create hosts



Docker hosts



Docker on Windows Server 2016



Installation Windows & Mac

● Docker Toolbox
○ VirtualBox

● Docker Native Beta
○ Xhyve
○ Hyper-V
○ Alpine Linux



Some host combinations

Linux Host OS

VM Container

Container

Windows Host OS

ContainerVM

Container



Architecture



Layered images



Dockerfile

● Used to build images



Compose

● Multi-container applications
● YML configuration file



Swarm



Universal Control Plane



Docker and the three ways of DevOps

1. Systems thinking: “The flow from left to right”
2. Amplify feedback loops
3. Culture of continual experimentation and learning



The First Way: Systems Thinking

● Increase velocity
○ Docker images boot time
○ Convergence
○ Layered images

● Decrease variation
○ Throughout pipeline: Dev, integration, production

● Services isolated as containers provide better ownership
● Business outcome: Time to market



The Second Way: Amplify Feedback Loops

● A defect is not a defect unless it hits the customer
● Early discovery is less costly
● Complexity of infrastructure when defect is detected
● Image = immutable binary artifact
● Attach metadata:

○ When was it built, commit SHA, Git repo
○ How do I start, validate and monitor it

● Business outcome: Higher quality



The Third Way: Continuous Learning

● Experiments and vision
● “Did the experiment produce results in the direction of the vision?”
● Setup “lab equipment” with prebuilt images

○ A Hadoop container ready to be fed data
○ Apache Spark container for other types of data
○ …

● Business outcome: Faster innovation



Trends

● RightScale “State of the cloud” survey, January 2016
● The Docker Survey, 2016 















Upcoming meetups

● Automation Nights Aarhus, 21. June
○ Implementing CD @ Systematic
○ Automation @ GoMore

● Docker Aarhus, 31. August


