
Leif Sørensen  
les@praqma.com

Continuous Delivery &
DevOps

…or the agile organisation

mailto:les@praqma.com?subject=

Praqma
Continuous Delivery & DevOps experts and evangelists

Tools & Automation experts. We help customers with practical
implementation of their development process.  
We don’t chop wood - we sharpen axes!

7 years, 25 employees, offices in Copenhagen, Aarhus, Oslo &
Stockholm

Events: Jenkins CI User Events, Continuous Delivery & DevOps
Conferences, DayOfContainers, Automation Nights, Code
Academy (code-conf.com)

Service partner to:

http://code-conf.com

Agile Manifesto

Four doctrines
Twelve principles

Agile

Watergile? Agilefall?

Processes

ReleaseDeploymentTestIntegrationDevelopment

Waterfall

Development → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

ReleaseDeploymentTestIntegrationDevelopment → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

Development → Integration →
Test → Deployment → Release

Is this a problem?

• No early and continuous deliveries to the customers

• Unpredictable deliveries

• If the software doesn't have to work, you can
always meet any other requirement (Gerald
Weinberg)

• Building up technical debt

• Quality is put on as an afterthought

• The most expensive software - is the one developed
but not (yet) used

Why?
The frequent delivery of working software to the

customer (without compromising quality)
requires:

• Agile architecture
• Agile Test / Quality Assurance
• Agile Infrastructure / Deployment / Operations

Continuous Delivery
Story-line

Continuous Delivery

Why CoDe?
• Quality

• Broken process / workflow

• Developer productivity - cost of development

• Time to market - time of development

• Predictability / visibility

• Receiver organisation (Customer) requirement - quality gateway

• Continuous Delivery - release to production

• Facilitate customer / user feedback

• Because it is a requirement for agile development

• Continuous Improvement - natural next step

Additional benefits with
CoDe?

• Errors / problems found earlier

• ‘Automatic’ traceability

• Documentation & visibility into the process

• ‘Automatic’ historic development

• ‘Forced’ focus on things you should have done anyway: automation,
testability, DevOps,...

CoDe Maturity

Technical debt

Henrik Kniberg: The Solution to Technical Debt http://blog.crisp.se/2013/07/12/
henrikkniberg/the-solution-to-technical-debt

http://blog.crisp.se/2013/07/12/henrikkniberg/the-solution-to-technical-debt

Technical debt
Anything about your code & development environment that slows you down. For example:

• Unclear, unreadable code

• Lack of test automation, build automation, deployment automation, and anything else
that could be automated that you do manually today

• Duplicate code

• Tangled architecture & unnecessarily complex dependencies

• Slow, ineffective tools

• Uncommitted code & long-lived branches (hides problems that will slow you down
later)

• Important technical documentation that is missing or out-of-date

• Unnecessary technical documentation that is being maintained and kept up-to-date

• Lack of test environments

• Long build-test cycle & lack of continuous integration

Technical debt

Things are the way they are because they got that way
(Gerald Weinberg)

Solution: Debt management
(Henrik Kniberg)

Operations handover

Continuous Delivery
Story-line

Traditional Dev/Ops
organisation

Development
• Focus on business functionality -

• Like Change

• Tools with focus on functionality

• Poor understanding of writing
“operational” applications

Operations
• Focus on stability & availability

• Dislike changes

• Own working model

• Maybe outsourced

• No common tools

• Too little common understanding across the whole process

• Slow and expensive

• Support is difficult, and often across Dev & Ops

• A lot of ‘blame games’

KPIs in IT Operations

DevOps Origin
August 2008: At the Agile Conference in Toronto, software developer
Andrew Shafer posts notice of a “birds of a feather” session entitled
“Agile Infrastructure”. Exactly one person attends: Patrick Debois.
Based on their talk, they form the Agile Systems Administration Group.

June 2009: At the O’Reilly Velocity 09 conference, John Allspaw and
Paul Hammond give their now-famous talk entitled, “10+ Deploys a
Day: Dev and Ops Cooperation at Flickr.” Watching remotely, Debois
laments on Twitter that he is unable to attend in person. Paul Nasrat
tweets back, “Why not organize your own Velocity event in Belgium?”

October 2009: Debois decides to do exactly that - “I picked
‘DevOpsDays’ as Dev and Ops working together because
‘Agile System Administration’ was too long”

http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

DevOps Definition

• Cooperation between Development & Operations

• Agile Infrastructure

• Agile System Administration

Or in other words:

Including Operations into the agile setup,
so we can deliver the results of our agile

development to the users

DevOps Definition
DevOps (a clipped compound of "development" and
"operations") is a culture, movement or practice that

emphasizes the collaboration and communication of both
software developers and other information-technology (IT)

professionals while automating the process of software
delivery and infrastructure changes.[1][2] It aims at establishing a

culture and environment where building, testing, and
releasing software, can happen rapidly, frequently, and more

reliably.[3][4][5

Wikipedia

https://en.wikipedia.org/wiki/Clipped_compound
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Information_technology_operations
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Software_testing

Why DevOps (now)?

• Separation of Development & Operations was maybe not a
good idea in the first place

• Agile & Continuous Delivery is hitting the Operations wall

• With or without Agile methods: a lot of companies have
serious difficulties getting things into production

• Continuous Delivery needs agile infrastructure

• With Cloud and other tools, Operations becomes ‘easy &
cheap’

• Unicorns show how it is done

Business wants agility: early and continuous
delivery of valuable software. Software developed,

but not delivered, has no value

What is DevOps?

• Is it a culture?

• Is it a job title?

• Is it a team?

• Is it a way of organizing?

• Is it a tool stack?

• Is it a way of designing systems?

• Or just a way of thinking?

Or all of the above?

And do we all have to do it?

Outsourcing?

• Insource operations

• Insource development

• Or at least outsource to the same provider - and
demand they do DevOps

• …but you can outsource your infrastructure - to the
cloud

Organisation

• Delivering software from requirement to production is
considered one process

• Don’t change process & and tools in the middle

• Don’t change ownership in the middle

• Don’t change people in the middle

• Remove silos

• The teams responsible for developing the applications
are also responsible for quality control, maintenance and
operation

Culture

• Create common goals

• Culture of cooperation, respect & trust

• No blame games

• Dont shoot the messenger

• “Continuous Improvement” is part of the culture

• Quality is build into the whole process

• If something is difficult, do it more often

Team

• DevOps teams develop, automate and support the
process

• Development teams have DevOps expertise included

• Full stack developers, both involved in development,
support and operations

Platform

Pick a platform that supports development,
implementation & operations

Architecture

• Architecture to focus on both development development and
operationability (support for automation, surveillance,…)

• Avoid monolithic application architecture: Independent
deployable components

• Automate everything

• Infrastructure as code

• Anything as code

Create an architecture that supports development,
implementation & operations

Tools
• Integrated tool stack across the process

• Version control

• Case handling

• Deployment

• Artifact management

• Automation and orchestration

• Test management & automation

• Tools with good support for operationability

Pick tools that supports development, implementation &
operations

Cloud and other tools

Cloud and other tools

Build Quality In - The Andon
Cord

How to get started?
• Big change for a big organisation with a lot of legacy

systems

• Can be done incremental

• Technology is ready

• Start by doing Continuous Delivery - use the results as
leverage towards operations

• Assess yourself: Where are you? Where do you want to
be?

• Introduce debt mangement: work actively with Maturity /
Technical Debt

All Unicorns were horses

Amazon, up until 2001, ran on the OBIDOS content
delivery system, which became so problematic and
dangerous to maintain that CTO Werner Vogels
transformed their entire organization and code to a
service-oriented architecture

Twitter struggled to scale capacity on their front-end
monolithic Ruby on Rails system in 2009, starting a
multiyear project to progressively re-architect and
replace it

LinkedIn, six months after their successful IPO in 2011,
struggled with problematic deployments so painful that they
launched Operation InVersion, a two-month feature freeze,
allowing them to overhaul their compute environments,
deployments, and architecture

All Unicorns were horses

Facebook, in 2009, was at the breaking point for infrastructure
operations. Barely able to keep up with user growth, code
deployments were becoming increasingly dangerous and staff
were continually firefighting. Jay Parikh and Pedro Canahuati
started their transformation to make code safe to deploy again

Gene Kim, https://opensource.com/business/15/4/6-common-devops-myths

https://opensource.com/business/15/4/6-common-devops-myths

Something to read

• CD Maturity Paper: http://www.praqma.com/papers/cdmaturity

• 10+ Deploys Per Day: Dev and Ops Cooperation at Flickr: http://
www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-
cooperation-at-flickr/76

• What is DevOps, Damon Edwards: http://dev2ops.org/2010/02/
what-is-devops/

• Top 11 Things You Need To Know About DevOps, Gene Kim:
http://www2.netuitive.com/rs/netuitive/images/
Top11ThingsToKnowAboutDevOps.pdf

• The Convergence of DevOps, John Willis: http://itrevolution.com/
the-convergence-of-devops/)

http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr/76
http://dev2ops.org/2010/02/what-is-devops/

Thank you!

www.code-conf.com/

