
A taste of trygve

Jim Coplien
Former C++ Programmer & Author

Gertrud & Cope
Helsingør, Danmark

jcoplien@gmail

1

Pointers…
• DCI documentation & downloads:

• http://fulloo.info

• trygve on GitHub:

• https://github.com/jcoplien/trygve

• Upcoming 2-day tutorial in Frankfurt (& others):

• https://sites.google.com/a/gertrudandcope.com/
www/training/ddd-with-dci

2

My greatest contribution to computing is that I
never invented a programming language.

 – Jerry Weinberg

3

In 1972, Kay coined the term:
“Object-Oriented Programming”
• In his 1972 paper the word “class” doesn’t appear

once

• Objects: operational models, in the machine, to
extend the capabilities of the human mind

• Classes came into Smalltalk ca. 1976 (from Simula 67)

• trygve: conceived to address the largest gaps
between current OOP and the benefits of the original
vision, through DCI

4

G&C
5-1

G&C

We feel that a child is a "verb"
rather than a "noun", an actor
rather than an object; he is not a
scaled-up pigeon or rat; he is
trying to acquire a model of his
surrounding environment in order
to deal with it ... We would like to
hook into his current modes of
thought in order to influence him
rather than just trying to replace
his model with one of our own.

5-2

G&C

We feel that a child is a "verb"
rather than a "noun", an actor
rather than an object; he is not a
scaled-up pigeon or rat; he is
trying to acquire a model of his
surrounding environment in order
to deal with it ... We would like to
hook into his current modes of
thought in order to influence him
rather than just trying to replace
his model with one of our own.

Alan Kay

5-3

G&C
5-4

G&C
6

G&C

Action Between Objects

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

V
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

ModelView

Controller

7-1

G&C

Action Between Objects

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

V
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

7-2

G&C

Action Between Objects

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

V
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

The programmer
must consider the

system:
action between

objects

7-3

G&C

Action Between Objects

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

V
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

8-1

G&C

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

V
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Programmers’
objects interact
with objects previously
conceived by other
programmers

8-2

G&C

System Operations

9-1

G&C

System Operations

While the specific
interactions are

emergent, the form
of the interactions

is designed.

9-2

G&C

System Operations

This form lives
within no single
object or class.

9-3

G&C

System Operations

Objects are an overly
small concept,

conceived for the
revenge of the nerds,

each owning their
individual classes

9-4

G&C

System Operations

10-1

G&C

System Operations

context TripReservation

}

{

10-2

G&C

System Operations

context TripReservation

}

{
role JourneyEnd { City city() { … } ….

}
role JourneyStart { City city() { … } ….

}
role RouteMap { Path pfinder() { … } ….
}

10-3

G&C

System Operations

context TripReservation

}

{
role JourneyEnd { City city() { … } ….

}
role JourneyStart { City city() { … } ….

}
role RouteMap { Path pfinder() { … } ….
}

10-4

Teaching Actors their Scripts
context TripReservation {
 role JourneyStart { … }
 role JourneyEnd { … }
 public TripReservation(Object jStart, Object jEnd){
 JourneyStart = jStart;
 JourneyEnd = jEnd
 }
}

11-1

Teaching Actors their Scripts
context TripReservation {
 role JourneyStart { … }
 role JourneyEnd { … }
 public TripReservation(Object jStart, Object jEnd){
 JourneyStart = jStart;
 JourneyEnd = jEnd
 }
}

11-2

Contextualized
Polymorphism

12-1

Contextualized
Polymorphism

foo

foo

foo

foo

foo

?

12-2

Contextualized
Polymorphism

foo

foo

foo

foo

bar

bar

bar

bar

bar

?

12-3

Contextualized
Polymorphism

foo

foo

foo

foo bar

bar

bar

bar

sna

sna

sna
sna

sna

?

12-4

Contextualized
Polymorphism

foo

foo

foo

foo bar

bar

bar

bar

sna

sna
sna

sna

12-5

Contextualized
Polymorphism

foo

foo

foo

foo bar

bar

bar

bar

sna

sna
sna

sna

“Just trust the
objects to do

the right thing
and everything
will be fine.” —

Smalltalk

12-6

Contextualized
Polymorphism

foo

foo

foo

foo bar

bar

bar

bar

sna

sna
sna

sna

“You believe in
things you don’t
understand, you

may suffer.”
— Stevie Wonder

12-7

Contextualized
Polymorphism

foo

foo

foo

foo bar

bar

bar

bar

sna

sna
sna

sna

Where is
the use
case?

Where is
the use
case?

12-8

Contextualized
PolymorphismRoles: A new

concept

13-1

Contextualized
PolymorphismContext:

Another

new

concept

13-2

Contextualized
Polymorphism

go

Context:
Another

new
concept

13-3

Contextualized
Polymorphism

go

14-1

Contextualized
Polymorphism

bar sna

14-2

Contextualized
Polymorphism

bar sna

System
Operations

14-3

Contextualized
Polymorphism

bar sna

Da
ta

System
Operations

14-4

Contextualized
Polymorphism

bar sna

Da
ta

Co
nt

ex
tSystem

Operations

14-5

Contextualized
Polymorphism

bar sna

Da
ta

Co
nt

ex
t

In
te

ra
ct

io
n

System
Operations

14-6

Hoare’s Insight
• “There are two ways of constructing a software

design: One way is to make it so simple that there
are obviously no deficiencies, and the other way
is to make it so complicated that there are no
obvious deficiencies. The first method is far more
difficult.” — Tony Hoare

• The primary goal of trygve is to make system
operation code readable

• It is in many ways a language for 7-year-olds

15

Smalltalk 80

Smalltalk 76

Smalltalk 72

Simula 67

C++

Java

trygve

DCI Squeak

Algol 68

C#

Marvin

self

Javascript

C

Garbage-
collected, single-

hierarchy

Syntax (Worse is
Better)

Object thinking
over classthink

D

Perl

awk

…

16-1

Smalltalk 80

Smalltalk 76

Smalltalk 72

Simula 67

C++

Java

trygve

DCI Squeak

Algol 68

C#

Marvin

self

Javascript

C

Garbage-
collected, single-

hierarchy

Syntax (Worse is
Better)

Object thinking
over classthink

D

Class-oriented
Programming

Perl

awk

…

16-2

Smalltalk 80

Smalltalk 76

Smalltalk 72

Simula 67

C++

Java

trygve

DCI Squeak

Algol 68

C#

Marvin

self

Javascript

C

Garbage-
collected, single-

hierarchy

Syntax (Worse is
Better)

Object thinking
over classthink

D

Class-oriented
Programming

Object-Oriented
Programming

Perl

awk

…

16-3

The trygve language
• Contexts: System use cases in code

• The goal: readable code

• System use case steps are demarcated along Role boundaries

• The Context chooses objects — “Role-players” — for each Role
(one-time binding)

• Many forms of object can play each Role — duck-typed
through a contract specification

• Role-players are dumb, and Role / instance contracts should be
simple and primitive

17

trygve building blocks
• Declarations and expressions — and one value

• Parser swallows most naive Java syntax

• Contexts: use cases — mainly a set of Roles

• Classes: the “domain model” (dumb): actor DNA
• Classify objects by how they are built

• Roles: scripts for the actors — stateless
• Classify objects by how they act

18

• So this works:
int fact(int n) {
 int retval = 1;
 if (n > 1) retval = n * fact(n - 1);
 return retval
}

• but this is orthodox:
int fact(int n) {
 return if (n <= 1) 1 else n * fact(n-1)
}

19

Details
• Semicolons optional

• Classes, but few class-oriented features (e.g.,
there is no protected)

• Strongly type-checked at run-time-typed; Roles
are duck-typed

• Rudimentary templates

• No exceptions, RTTI, concurrency

20

More going on here than
meets the eye

• The trygve language is a stepping stone to
side-effect free programming

• States make it difficult for a Role-player to play
several Roles (the MI problem)

• Stateless computation transcends the problem

21

Both class and Context
instances can play Roles

• … in which case, we really don’t need classes
any more

• They never were part of the OO vision

• The trygve language supports more or less
arbitrary scope nesting (anything inside anything)

• Classes become truly operational models: exactly
the Piagetian ideal that Kay strove for

22-1

Both class and Context
instances can play Roles

• … in which case, we really don’t need classes
any more

• They never were part of the OO vision

• The trygve language supports more or less
arbitrary scope nesting (anything inside anything)

• Classes become truly operational models: exactly
the Piagetian ideal that Kay strove for

22-2

On babies and bathwater
• Classes are still part of the business vocabulary

• They are at least part of the learned business
mental model

• They are certainly part of the programmer
mental model — and programmers are people,
too

• So the “classless movement” is really a fad

23

Reflection
• Even common inclusion polymorphism is overly

general — reflection takes it far outside human mental
models

• trygve slices reflection with a precisely honed scimitar

• Reflection is the Turing Machine of types

• It shows a lack of design discipline in the articulation of
a paradigm

• See “Reflections on Reflection,” SPLASH 2013 keynote

24

Conclusion: Everybody Wins
• Good for humans…

• Both cognitive & volitive models in code

• Organizes, rather than suppresses, complexity

• … and software engineering

• Incremental addition of new use cases

• Reduced discovery cost

• Separates rate-of-change shearing layers

25

Postlog
• trygve is an open-source community research

effort — join it (GitHub jcoplien / trygve)

• Also a binary download and documentation at
fulloo.info.

• We’ve been stuck gilding the lily and making
much ado about nothing for far too long

• trygve does not aspire to be king: it exists only to
combat ignorance and stimulate thinking & dialog

26

27

Other assorted goodies

• Templates (very minimal — just enough so
people can use familiar Java containers)

• Very basic Frames, Panels, Events, Colors

• Rudimentary InputStream & OutputStream I/O

• No exceptions (goal is readability)

28

Look, Ma, no semicolons
interface EventHandler {
 public void handleEvent(Event e)
}

class MyPanel extends Panel {
 int XSIZE = 1000
 int YSIZE = 600

 public int xsize() { return XSIZE }
 public int ysize() { return YSIZE }

 public MyPanel() {
 Panel()
 eventHandler_ = null
 frame_ = new Frame("Bouncy")
 frame_.add("Center", this)
 frame_.resize(XSIZE, YSIZE)
 frame_.setVisible(true)
 drawRect(0, 0, xsize(), ysize())
 repaint()
 }

 public boolean handleEvent(Event event) {
 boolean retval = true
 if (event.id == Event.MOUSE_MOVE) {
 if (eventHandler_ != null) {
 eventHandler_.handleEvent(event)
 }
 }
 return retval
 }

29

Everything’s an expression

context SpellCheck {
 role Utilities {
 public boolean isDelim(String c) const {
 return switch (c) {
 case "ø": case "Ø": case "æ": case "Æ": case "å": case "Å":
 false; break
 default: (c < "a" || c > "z") && (c < "A" || c > "Z")
 }
 }
 }

30

Duck-typed Role / Object
Contracts

role ThePanel {
 public void drawCircle(int x, int y, int r) {
 fillOval(x+r, y+r, r, r)
 }
 public void drawPaddle(int xs, int ys, int h, int w) {
 drawRect(xs, ys, h, w)
 }
 public int maxX() { return xsize() }
 public int maxY() { return ysize() }
 public void setColor(Color c) { setForeground(c) }
 public void clearObjects() { removeAll() }
 public void clear() {
 setColor(new Color(227, 221, 240));
 fillRect(0, 0, maxX() - 1, maxY() - 1)
 }
 } requires {
 void fillOval(int x, int y, int h, int w);
 void drawRect(int x, int y, int h, int w);
 void fillRect(int x, int y, int h, int w);
 int xsize();
 int ysize();
 void removeAll();
 void setForeground(Color color)
 }

31

A Puzzle
class ArrayDupTest {
 public void test() {
 int [] intArray = new int[5];
 for (int i = 0; i < 5; i++) {
 intArray[i] = i
 }
intArray[0] = i

intArray[1] = i

intArray[2] = i

intArray[3] = i

intArray[4] = i

 for (int i = 0; i < 5; i++) {
 System.out.println(intArray[i])
 }
 }
}

new ArrayDupTest().test()

32

Most class-oriented features
have been removed

• protected

• super

• Class::

• ABCs

• static (though it exists internally)

33

Can an object play more
than one Role?

• In series, yes: that’s the whole idea
• In parallel, no…

• One Context could instantiate another Context
• That Context could share Role-players with the

original

• … unless it’s in the same Context so that there is
no confusion

34

The Object Machine
• Classes are run-time objects (but not in the

language)

• Two scratch stacks: main, and event

• Two activation record stacks

• Uses Java GC + Context reference counting

• Like Smalltalk in that everything is an object

35

